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PREFACE

The essential ideas of this paper, the introduction of mixed

strategies and the modification of Everett's [5] and Pughts [9]

double Lagrange multiplier method for constrained min-max problems,

have had a checkered career.

These ideas arose from a computational device that completed

the solution (or appeared to complete the solution) of the ABM/

Shelter deployment problem formulated by Robert Kupperman. The

device was a powerful one and I promptly applied it to a much more

complex and interesting version of the same problem. The resulting

offense and defense solutions were thoroughly convincing.

What has followeJ this initial discovzry' and application has

been a succession of attempts to explain why the device, now

christened the modified double Lagrange multiplier method, apparently

works. The first attempt appears to me now to have been quite

naive. It foundered with the discovery that a presumed minimum was,

in fact, a local maximum. The second trip zo the drawing board

produced a saddle-point theorem which works if the number of feasible

strategies for the maximizing player is finite. However, all of

ray attempts to extend this theorem to a continuum of strategies

exploded in one way or another. Worse, the saddle-point theorem

could not provide a basis for my method unless it could be so

extended.

This paper follows an entirely differen7 route from these

earlier attempts. I am frankly indez:e- .o _K,?Ln [TJ whose paper

contains the e:sential step I have boreowei ard put to my own use.

The results that I have (I hope) proved are no- as strorg as I had

initially expected. Nevertheless they shoq).d prcvi,.e a suffic en,
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basis for the more grandiose applications of the modified double

Lagrange multiplier method that I have attempted elsewhere.

I am greatly indebted to a number of my colleagues who

patiently stucied the confused logic and opaque language of several

previous drafts of this paper. In particular, the comments of

James T. McGill of IDA and James E. Falk of RAC led to the correction

of several errors and helped me to improve the exposition throughout.

The research reported in this paper was supported by the Office of

Civil Defense, Department of the Army under Contract DAHC 20-70-C-0287

with the I113titute for Defense Analyses.

Edward S. Pearsall
May 1971
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A LAGRANGE MULTIPLIER METHOD FOR

CERTAIN CONSTRAINED MIN-MAX PROBLEMS

I

INTRODUCTION

Constrained min-max problems are constant-sum two-person games in

which the maximizing player enjoys the advantage of .,ioving last

and both players select strategies subject to separate side condi-

tions. Problems of this general form are natural archetypes for a

variety of defense resource allocation models. Probably the most

common defense application is to the allocation among cities of

shelters and antiballistic missiles. The objective of the defense

is to minimize the casualties that may be inflicted by an enemy

with a given arsenal of ballistic missiles and a full view of the

defense allocation. Among the oi...thors who have formulated such

models as constraired min-max problems are Ro!ert Yuppirman,

Tmit! 7C, Eisen r[d, an--! O,,n [7.. An excellent mathematical

survey of min-max problems in general has been provided by

Danskin [3].

Since the minimizing player is deprived of the means to imple-

mernt a mixed strategyt constrained min-max problems do not always

possess equilibrium pairs, i.e., strategies that are simultaneously

optimal against each other. This inconvenient characteristic

separates Tin-max problems from the well-developed body of theory

Aror ca.es wit;h saddle-point soil-ior.s. Methods designed to locate

saddle-points wil.l succeed only fortuitously in solving min-mox

problýe-s.

Cqjally iportant., the absence of saddle-point solutions pre-

v -: , t=he s tra ightorwar2 i use of. L•garge !%lItipliers in dealo.iing

with the players' zonQtrair.tt. Nevertheless, several procedures

e-Ilyinq Lagran~e tultipliers (or, equivalertly, a convex duality

tt-eor;-) have been proposed for mmin-rax problems with constraints.

-(2 -•- ,i, [3] prove Lagrange nnltiplier tthorems in
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connection with their use of directional derivatives. However, the

constraints pertain only to the minimizing player and directional
derivatives typically lead to cumbersome processes for calculating
solutions in applied work. A more workable approach is the "double"
Lagrange multiplier method proposed by Everett [53 and Pugh [8].
Unfortunately, the circumstances under which the method might
yield optimal solutions are not described by Everett and Pugh.

Moreover, their method is clearly capable of yielding strategies
that are not optimal solutions to constrained min--iax problems.
Pugh attempts to deal with this difficulty by offering "verification"
techniques that, in effect, provide bounds for solutions. However,
these bounds are of doubtful value in applied work. Most recently,
Owen [7] nas employed a convex duality theorem to transform a con-

strained min-max problem into a pure minimization problem. Unfor-

tunately, Owen fails to exhibit solution strategies for the

maximizing player.

In this paper, we shall employ Owents procadure to obtain a
specialization of Everett and Pugh's double Lagrange cultiplier
method. The method applies to problems in which -he maximizing
player's strategies may be segregated by tactics and probabiliatically
mixed For example, in attacking a city defended by antiballistic
missiles, the maximizing player might eTplcy strategies designed to

leak through, suppress (by destroying the radars), or exhaust -he
defense--or he may choose not tc attack the city at all. Normally,
the maximizing player wculd .not b- indifferen-, between two
strategies associated with the same tacic,, i.e., having decided
to, say, exhaust the defense, the .ax!:tizing player will 1ypically
findc that there is a sin;le best :numler of warheads for this pur-
pose. On the other hand, a clever derense may leave the ,aximizing

player indifferent between the best st-ateqies aasoci•te with

two or wort distinct tactics. For example, i,;Aiballistic u4issmleS

may have been installed in the citv in nu-4bers just sufficient, tc

leave the qaximizirtg player Indifferent betwesen exhauicting the

defense anM not attacking tCh ctry at all. We shall allow tht



maximizing p'layer to resolve such dilemmas by probabilistically

mixing strategies associated with different tactics.

This is a novel formulation for constrained min-max problems
and requires some elaboration which we shall provide in Section II.

In Section III a convex duality theorem is employed to derive a set

of sufficient conditions for solutions to a class of constrained

min-max problems with mixed stracegies. An even stronger set of

sufficient conditions may be derived if certain functions are

differentiable and quasi-convex. These conditions are derived in

Section IV and provide the basis for the presentation of the
modifieJ, double Lagrange multiplier method (Section V). In the

concluding Sections the characteristics of constrained min-max

problems to which the method is best suited are described and a

simple ABM/shelter denloyment problem is solved to provide an

illustration.
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II

THE CONSTRAINED MIN-MAX PROBLEM (WITH MIXED STRATEGIES)

By convention, the outcome of a constant-sum two-person game is

measured as a payoff to one of rhe players from which the other's

loss differs, at most, b1 a constant amount. If we let X and Y

denote strategies for the maximizing and minimizing players, re-

spectively, then this payoff (to the maximizing player) may be

represented by the real-valued function H(X,Y). The constraints

on the players' uses of resources may be represented by the inequality

systems C(X) < c and B(Y) < b where C(X) and B(Y) denote real-valued

vector functions and c and b are vectors of the available quantities

of the players' resources. Moreover, the players are restricted in

their selection of strategies to the elements X and Y of the sets

S and T. The function H is defined over the product set S x T, the

vector function C is defined over S, and B is defined over T.

(Throughout the paper vectors are taken to be row vectors unless

marked with an apostrophe to indicate the transpose.)

A general statement of the constrained min-max problem is to

find a strategy X0 for the maximizing player and a strategy "1

for the minimizing player that satisfy the requirements:

1. The strategies are feasible for both players: X0 ES, C(X°) 0 c

and '•ET, B(YO) <Z b.

2. The strategy X0 maximizes the payoff function given the strategy

Y0 subject to XES and C(X) < c:

H(X°,Y) t> H(X,Y°) for all XES, C(X) < c.

3. The strategy Yo minimizes the maximum payoff in XES, C(X) < c

subject to YET and B(Y) <_ b:

H(X0 ,Y) _ Su;p HH(X,Y)I XES, C(X) i_ c for all YET, B(Y) <= b.

4



(Note that a constrained max-min problem may always be converted to
a min-max problem with the same const:.aints simply by reversing the

sign of the payoff function.)

Mixed strategies are not conventionally believed to serve any
useful purpose in the mathematical theory of min-max problems. The

minimizing player cannot implement probabilistic mixes of strategies

and the maximizing player appears to gain nothing by using them.

In short, it is impossible to visualize any useful function of mixed
strategies in an actuzal play of the game. From this observation it

is easy to presume that mixed strategies for the maximizing player

can have no role in the mathematical treatment of min-max problems.

This has been the presumption of virtually all previous work. (Note,

however, that Pugh [1] and Owen [7] in their work replace the payoff

function with its concave envelope. This device implicitly admits

mixed strategies since there may be points on the concave envelope

that correspond only to weighted averages of points on the real

payoff function. These payoffs can be achieved only by probabilis-

tically mixing the maximizing player's strategies.)

In standard game theory the introduction of mixed strategies for

both players serves to insure the existence of a saddle-point solu-

tion. That is, there exist mixed strategies that constitute an

equilibrium pair. The introduction of mixed strategies for just
the maximizing player is not alone sufficient. The resultant game

will not possess a saddle-point unless the min-max problem had an

equilibrium pair of strategies in the first place.

Nevertheless, mixed strategies for the maximizing player may be

made to serve a useful purpose by the interesting expedient of re-

defining the concept of an equilibrium pair and then exhibiting
a correspondence between such redefined equilibrium pairs and

solutions to constrained min-max problems. A s lightly modified

version of the "seesaw" problem provides a simple illustration of

this use of mixed strategies. The maximizing player chooses a point

between the right end, X=l, and the left end X=-l, of a seesaw but

he may not sit directly over the fulcrum, i.e., - 1 <_ X S 1 and X 0 0.

5



The minimizing player chooses the angle of the seesaw, - n/2 <_ Y < n/2.

The payoff is the height of the maximizing player's seat above the
fulcrum, H(X,Y) = X sin Y. This problem has no equilibrium pair of

strategies (X°,Y°). However, a mixed strategy may be used to

demonstrate that Yo = 0 is optimal for the minimizing player. Two
tactics may be descerned for the maximizing player by observing that

either X = - 1 or X = 1 is optimal for the maximizing player for any

Y (both are optimal if Y = 0). Let H*(Y) ana H*(Y) be the payoffs

that result from a choice of the left and right ends of the seesaw,

respectively. Then, H*(Y) = - sin Y and '(Y) = sin Y. A~probabil-

istic mix of these two strategies yields the expected payoff u(-sin Y)

+ (U - u) sin Y = (1 - 2u) sin Y where 0 < u < 1. The probability

o .5 and the strategy Yo = 0 constitute an equilibrium pair in
the restricted sense that:

(l - 2iO) sin YO > (i - 2u) sin Y for al 3 -< u < 1

and

(1 - 2u') sin Yo < (1 - 2"O) sin Y for all - 1/2 < Y <_ 1/2.

The maximizing player's mixed strategy is to sit on the right end of
the seesaw (X° = 1) with probability.5 (LO = .5) and to sit on the

opposite end of the seesaw (XO = -1) with the same probability .5

(1 - "° = .5). That ' = 0 satisfies Statement 3 of the definition
of a solution to the min-max problem follows from the fact that:

(1 - 2o) sin Y S Max {X sin Y 1-1 < X < 1, X $ 0

for all - 11/2 <_ Y _ 11/2.

Either = - 1 or XO = 1 satisfy Statement 2 and both (XO = - 1,

Yo = 0) and (XO = 1, Yo = 0) satisfy the feasibility requirement,

Statement 1. Now, the mixed strategy we have derived for the

maximizing player is completely superfluous so far as playing the

seesaw game is concerned. Its function in the argument above is

solely to permit us to identify an optimal strategy Yo for the

minimizing player. This approach to min-max problems will be

6



formalized and extended to problems with constraints in the remainder

of the paper (The solution to the seesaw problem is derived with

directional derivatives in Danskin [3).)

For the special class of problems dealt with in this paper, we

assume that the maximizing player's strategies may be assembled by

tactics and that strategies associated with different tactics may

be probabilistically mixed. Let j = l,...,n be an index of tactics.

For each tactic j we denote:

S.• a set of strategies X

Hj(XjY) a payoff function

C (X) a resource vector function for the maximizing player.

Pj a probability of use.

We also assume:

1. The strategies X. are representable as nonnegative row

vectors of real numbers, i.e., Sj {Xj in Enl X 0.

2. The resource vector functions are linear, i.e., Cj(X.) = X.A.

where A. is a real matrix of appropriate dimensions.3
3. The systems X. > 0, X A < c all have at least one solution.

4. The functions HI.(XjY) are finite-valued and concave in Xj> 0

for all YET, B(Y) S b.

5. The functions H*(V,Y) defined by:

H*(VY) Supx iH.(Xj,Y) - vA Vj X > 0

are continuous in V >, 0 [A' and X* denote the tran3poses of

Aj and XJ.] for all YET, B(Y) < b.

6. c>0.

The purpose in assembling strategies by tactics is to provide

functiona H*(VY) J=l,...,n with convenient mathematical properties

whet Y is defined as a nonnegative real vector. Specifically, it is

generally necessary to define tactics in such a way that the furctions

7



I3*(V,Y) j=l,...,n are continuous and differentiable for V >2 0 and3
Y > 0. Sorting the maximizing player's strategies by tactics usually
does little conceptual violence to a constrained min-max problem.
Indeed, useable divisions of the strategy set S are often suggested by
the structure of the problem itself and probabilistically mixing the
strategies associated with different tactics causes few difficulties
in the interpretation of solutions.

The constrained min-max problem with mixed strategies is to find
strategies X. j=l,...,n for each of the maximizing player's tactics,
probabilities "j=l,.,n, and a strategy YO for the minimizinq

player such that:
n n

1. X0 > 0 j1l,...,n, u 0 > 0 j1l,...,n, :T r, "°X.A. <: c
I= =j~l 3 j=l 3

and YOET, B(YO) < b.

n
2. 7- u3Hj(X'0Y'v°) >7 ujH.(X.,Y:) for all X. > 0 j=l, ...,n,

j=l j=l 3 3

n n
uj > 0 j=!,...,n, 3l uj = 1, j7 u.XjA. < c.

j=l j 1 =

n n

uj 0 j=1,...,n, r- u = 1, u.X.A < c
j=l ) j=l J

for all YET, B(Y) < b.
This definition is an obvious analogue of the definition of a solu-
cion provided earlier for constrained min-max problems without mixed

strategies.

The definition incorporates expectational statements of the payoff
n

function, 7 p.H.(X.,Y), and the maximizing player's resource
j=l

n
constraints, j j_.XjAj. < c. That is, the solution to the constrainedj-l1 =

min-max problem with mixed strategies establishes a random process in

8



which the strategies X° j=l,...,n are played with probabilities

n
00

T oH½.(Xj YO) and the expected use of resources by the maximizing
j~l

ri 0 0

player S uoX.A. does not exceed the vector of available quantities
j=l

c. However, there is no guarantee that the expected payoff will be

achieved and that the maximtizing player t s resource constraints will

be respected in any single play of the game. In most applications)

therefore, it would be preferable to solve for strategies X j=l,...,n
0 0 0(X.,Y) = n -,

such that if > 0 then X.A c and H.(.,) i H.(X.,y).
= 3 3 j=l •

With this condition observed any play of the game must result in the

same actual payoff at a cost in resources to the maximizing player

that never exceeds the amounts available. Unfortuna-ely, the in-

clusion of this additional restriction in the definition of a solution

makes mixed strategias superfluous and leaves us with a mathematically

less tractable problem.

A sensible second-best procedure, then, is to solve for strategies

that satisfy only Statements 1 through 3 of our definition. Whether

or not this procedure produces acceptable approximations can be

determined after the fact. Variations in payoff and resource use ma,

be computed and if they are small relative to the expected values,

little distortion is likely .o result from iccepting them as approxi-

martons. In any case the expected payoff, a H (Xe,'r),provides a

useful upper bounc: to :he solution value c- the payoff function if we
n o.

dd the conditicn X;A. < c and H(X, "l) = - (X,'y,) if LA > 0
"o j=l

for ail ý:act.ics j=l,...,n.



Ill

SUFFICIENT CONDITIONS FOR A SOLUTION

Let V denote a vector of nonnegative real numbers whose elements
correspond to the elements of the resource vector function

n
7 .jX.A . Sufficient conditions for a solution to the constrained

j=l

min-max problem with mixed strategies are:
n

1. XO0 > 0 j=l,...,n, U0 > 0 j=l,...,n, 7' u9 = 1, Y V0 > 0.j~.

2a. Hj(X3,Yo) -V°A#X°!" > H.(X.,Y°) -VPA'X'j for all X.=> 0 j=l,...,n.

n 0 00
2L. - "j [H.(X°,j) -v°A-X° ] > U CH[H.(X.,Y?) - VO'O AX.

j=l j j j=l i J

n

for all uj > 0 j=l,...,n, T'. u = 1.
j=l

2c. V uX0A. - c > V X A. - c for all V > O.

n nl

3a. r "9H (V0y) + Vc' < 7 uWH_(V,Y) + Vc'
j =I j =i

for all V > 0, YET, B(Y) < b.

3b. B(Y°) < b
where the functions H. are defined as:

J
H](V,Y) = Supx {Hj(XY) - VAXlJ >

and [ ]" denotes the transpose of a matrix. The numbering of the

conditions has been chosen to roughly correspond to the numbered

statements in the definition of a solution.

10



Condition I largely repeats Statement 1 of the definition. Non-
negative conditions on the solution value of the vector V have been

n
added and the inequalities 7 u X0A0 < c and B(Y0 ) < b have been

j-= i J `

deleted. The reasons for these alterations will become apparent as

we proceed to show the origins of Conditions 2 and 3.

Condition 2, together with the relevant components of Condition 1

,nay be used to show that Statement 2 of the definition of a solution

n
and the inequality u v. 0A. <= c are satisfied. For this demon-

stration we require the Saddle-Point Theorem of mathematical program-

ming. For o.r purposes a convenient statement of the Theorem is

the following: Let F(X) be a real-valued function and G(X) a real-

valued vector function of the strategies X in S. If the strategy

X0 ES and a real vector V 0 _ C consticute a saddle-point of the

Lagrangian function F(XN - V[C,(X)]' in XES and V Z 0,, i.e.,

F(X 0 ) - v°rG(X0 )]' = F(x) - V°(G(X)]" for all XES

and

F(XO) V°[G(G t)] <F(XO) - V[G(X°)]° for all V >t 0

zhen X0 maxirnizes i(X) in S subject to G(X) '5 0, i.e.,

FCX°) • F(X) for all XES, G(X) < 0

and G(XO) 0. The Theore-m can be. found in most texts on mathematical

progranm'inS such as Karlin [6). The proof is not dependent on the

characteristics of the sei. S.

To apply the Theorem let:

s xjj j=1,...,n > 0 j=1,...,n, a 0 j4l,...,n,

ni u1~l
i =i

11



n
F(X) = E pjyj °)ý

a r-4 0
n

G(X) = ijXjAj - c.
j=l

Conditions 2a and 2b may be used to construct:

n n
' 3 H( 0,Y0) - Y uXAj - C]

j1 ~j=l-

n n
1 pjH.(X.,Y") - -. uj.X.A. - c1-= =1 (J,3 j=l J3

n
for all X. 0 j=l,...,n, uL. 0 j=l,...,n, r u4 = 1.

j=l J

From Conditiorn 2c:

Z U 0%H (XC"?,Y) - Vol 77 - ciA
j=l j=l j 3

n ~ n
H Cxi)Y) - Vi uX.A. - c]' for all V > 0.

j=J j=lU J J =

Since

0 n 00
X>0 jul.., u2 > 0 j=,...,n, r u. :1 and V° > 0

we murt have a saddle-point. By the Saddle-Pcint Theorem:

P. n
ZuHj(X3,Y) >? 7 ujHj(X,,Y°) for all X. > 0 j=1,...,n,

j=l = j=l I

n n
U. > 0 ==l,...,n, 7, i 1, 7 jXjAj S c

1 =1j j=l

which is Statement 2 of the definition of a solution and

n- 00j Pj A .__C.
j=l

12



The first step of the demonstration that Statement 3 of the
definition of a solution is implied by Conditions 1 through 3 is to

n
exhibit a saddle-point of the quantity " p *K(VY) + VC'. From

j=1
Conditions 3a and 3b:

n n
j' HO*(V",t?) + Voc < r U (VY) + ye'j=i 33 =i 1 J

for all YET, B(Y) e b, V > 0

and B(Y°) b.

Condition 2b provides:

n nIt u , iýV + Voc. > 0 ,• , +~
~ L .Ht!(V 'Y") +VIC-

j = j= "

for all u. > 0 j=li...n r uF = 1.
=13

n
So we apparently .hve a :aZil.e-point of the expression F p H•(VY)

j=1
+ Vc" where the I i-iizazicn proceeds over YET, B(Y) < b, V > 0 and

n
the -.-axinization is t.aker. o.•e L; > j=1 ,...n = 1. This. is

S~j=I

the equilibrium pair in a restric.ed sense that we referred to earlier.

Since ",c order in which ..- mi:.tio: and maximization operations

are per.'orm.ed is i• ria. wh.-,. dealing with saddle-points we have:

: YI C-. , V. i.x u, H(V,Y) + VC'

:t o ,., L, Ifor all Mt B < b.

The next step is •o show that, V n VOX equals Max NWnN.

This is done by appealing to the la-iliar Mirn-Max neorem of

.13



game theory. The following statement of the Theorem approximates that

given in Xarlin [6]. Let F(XY) be a real-valued function of X in S and

Y in T where both S and T are closed, bounded and convex sets in En.

If F is continuous, convex in Y for each X, and concave in X for each

Y, then:

Min,/Max~ F(XqY)tXESj YET~ Max Miny {F(XY)IXESs YET~

To apply the Min-Max Theorem cLef ine:

n

j=l j

T = IVVz >0'V, v'5 Max~ ~H(OY) - 40)

and
n

P(XOY) 71 u.H*(VY) + Vc'.

It is obvious that S is closed, bounde-I and convex and that T is

closed and convex for any YET, B(Y) < b. To show that T is also

bounded we must recall that c > 0 and that r-he functions

H (XjY) j=1,...,n are finite valued in X. t 0 j=l,...,n for YET,
B(Y) < b. Then 14ax. H'ý(GY) - HA0,Y) < and zhe set T must be,

bounded-2. The function r u .i(V,Y) + Vc" is clearly continuous and

conr:ave in the variables a. j=l ... ,n fcr all values of rihe vector V.
The function is continuous in V for any ) j=l,...,n because the

Z4

tunctions HIMV,Y) j=1,...,r are each assL:_ed -o be continuous in V.

i, .•c ,Y) + Vc is convex In

V i• h funr.*ionA q.(V,Y) a 4re a h cnvex functions of V.

Choose V1 > 0 and Vý. :t 0 the;, Wr an 0 <: < 1:

Ii



Sin(ce th condtion ofIP th Mm-Max) Thoe are met for all X

Sup~ V 0,~ijXiY c <v Ma"x'. >H OY)u X 1t) XY
- = Jt;J

n n
MivMxU j~jVY Vc' P - 0 j=12...,n., j' u =1

V >0, Vc' < Max H*OY) - H(

n n
:,.3 Mi.K'(,Y + (Vc' + V3 EHCY U c

j~l ~ JJ

Vo any V 0, Vc' < Max {H*CO,Y) - H (O.,Y))

Sin:y sthde-ineulty_ ins hold at, V) At suhapit:emsae

H~.H"(V,Y) + Vc' < 7- uHý*(O,Y).+Vc

3J

Si.my usitt ndrarag erst oti the inequality:ms od tV=0

nn
"_ *(VY) + (OY) - H.(OtY)].

j~l j J

j-15



n
On the right-hand side, ýj > 0 j=l,...,n and .7 = 1, therefore,

Vc' < Maxj{H !(OY) - H (O Y). Thus the bound Vc' < Max. H (OY)

- Hj(OY) is always respected and its inclusion to meet the condi-
tions of the Min-Max Theorem is purely formal. Omitting the bound
we have:

E ýi'H"(VOryO) + voc, < max MH*(VY +
j=-l ( -- Ma=iV 1c

•I ~n

-V > 0, •j > 0 j=l,...,n, E 4. = 1 for all YET, B(Y) < b.

Our next step is to show that:

Minv T p.Ht(VY) + Vc'IV > 0{n n
SuPXj 4i Y) > 0 j.l,...,n A < cj j~ •jj , J =j~l •j j )

n

for all uj >. 0 j=l,... n, 7 4. = I and YET, B(Y) < b. Our procedure
j=l _

is similar to that followed by Owen [7] and makes use of the same
Convex Duality Theorem. The Theorem is due to Rockafellar [91 who
proves it in a somewhat more general. form than that employed by Owen.
Let F(X) be a concave function of a vector X in En. The conjugate of
P is the function F*(U.) of U in En defined by:

F*(U) = SuPy{F(X) - UX'
Let G(Z) be a convex function of a vector Z in En. The conjugate of
G is the function G*(V) of V in En defined by:

G*(V) Infz{G(Z) - VZ'}.

16



If the system X > 0, XA < Z (A is 3 real matrix of appropriate

dimensions) has a solution in the doma'ns (of finiteness) of F and

G, then:

SuPz{F(X) - G(Z) I X > 0, XA < Z
I aI

- Minu, Pl4 FU) - G*(V) I v > 0, VA" > u

To apply Rockafellar's Theorem we define:

n

) = ltHj(Xj,Y) if X. 0 j=l,...,n

F(X)=

-= otherwise

0 if Z =c
and G(Z) =

O otherwise.

To verify that the conditions of the theorem are met we observe,

first, that F(X) is concave in X. j=l,...,n for ij >= 0 j=l,...,n

provided that the functions H (X.,Y) are concave in X. > 0 for allJ~ J
YET, B(Y) < b. But this has already been assumed. Second, the

function G(Z) is trivially convex in Z. Lastly we must show that

n
the system X. > 0 j=l,...,n, E 4jXjAj <= Z has a solution in the

Jj=l

set of points for which F and G are finite for any u. > 0 j=l,...,n,

57 . 1. Since G(Z) is finite only at Z = c this condition is
j=l!

met only if X. > 0, X.A. < c is a solvable system and H.(X.,Y) is

finite-valued for at least one solution for each tactic j=l,...,n.

We have assumed that X >= 0, XjA. < c is solvable and that H.(XjY)

is finite-valued in X. > 0 for all \ET, BfY) <_ b for every tactic

j=l,...)n. The conjugate functions F*(U) and G*(V) are:

17



Sn l n
F*(u) = SuPx EY) - , unxX > 0 i=1,...n=l j=l

and

G*(V) = - Vc'.

By the Convex Duality Theorem:

SU_ F.XY)

G(ZIX >0l jj,.~l 3 1

n n
MiUSUPxjX jl uj 7 P(XjY) r U(Z)Ijy > 0 j=l,...,n, ~ jjj<

=ir~, SuPx1 j~ i. •~~ y) - 5' U.X' ~•.,

jVjl j0

+ Vc'IV > 0, VV.A' > U. j=l,...,n 3 for all jt >= 0 j=l,...,n,

n
y L, = 1 and YET, B(Y)• b.

j=l

Each side of this equation can be simplified. On the left-hand

side a supremum always is attained at Z = c. On the right-hand side

the supremum within the brackets is a nonincreasing function of the

vectors U. j=l,...,n. Therefore, a minimum can always be found

among the vectorr V, U. j=l,...,n such that Vu.A = U. j=l,...,n.

On the right-hand side of the equation we may omit the inequalities

VuA` > U. j=l,...,n and make the substitution:

SUxj nl nY - J"lIXJ >= 0 j=l,...,n
Sup I n n U

j -~ j=l -

SSUPj n n - l jX3Xj > 0: j=l,...,n .

This can be simplified still further by inserting the functions

H"(V,Y) j=l,...,n:

18



In n ; n
SUPx. j~l ujH (XjY) - F ujVA X IXj 0 j=l,..,

n
= L L H*(V,Y).

j=l 1

After all of these simplifications have been incorporated the
equation provided by the Oonvex Duality Theorem becomes':

~ n

Supx Z w j( ),Y ) >j 0 j=l p .n, F P jXj c

=MinV E p H! (V, Y) + Vc'I V > 0 for all
VIj=l

n
LI > 0 j=1,...,n, 1= and YET, B(Y) < b.

J j=l =

Combining this result with that of the previous step yields:

nnn °H"V 0 ,YO) + Sup H(X'
j =;l -' j )j=l

n n )lxj > 0 j=l,...,n, u 0 j=].,...,n, rI "j = 1, Z ujjAj < c
j=l j=1

for all YET, B(Y) < b.

To obtain Statement 3 of the definiticn of a solution it remains
only to show that:

n n
F U...(V oY) + Voc. F, u .j =! j =i

rro:.. Condition 2a we obtain:

H*(Vo,yo) H (x.,Yc) - VAX' j1-,...,n.

J9 J

19



Multiplying by the probabilities u0 jl=...n, summing and adding

V c 0to each side:

n Iin

Z ýH•(V°,Yo) + Voc) = r (0 j(>l ,Y0  - V' [ 7 u9X0A - c]".j= = J J- jl j=I ) j1 jI uj j

Prom V0 >_ 0, Condition 2c and the previou, ly derived inequality

n

j=l

V[ " 0 X0A. - c = 0.j=l -j j -

Statement 3 of the definition of a soluriorn "o the con3trained min-

max problem follows since B(Y?) < b is simply Condition 3b.

y0



IV

THE SUFFICIENT CONDITIONS WITH DIFFERENTIABLE Q.UASI-CONVEX
FUNCTIONS

A somewhat stronger set of sufficient conditions may be derived for

problems with the characteristics (in addition to those already

assumed--see page 7.)

7. T =IY in E nly> 0}

S. H.(X.,Y) j=l,...,n are differentiable in X. >_ 0 j=l,...,n

and Y> 0.

9. H*(VY) j=l,...,n are differentiable in V = 0 and Y > = 0.
J

10. B(Y) is differentiable and quasi-convex in Y > 0.

if Assumptions 7 through 10 are met, the sufficient conditions of

the previous section -ay be replaced by the following stronger set.

Let W denote a vector of nonnegative real numbers whose elements

correspond to the elerments of the resource vector function B(Y):

n
i. X 0 > 0 j=l,...) u > 0 j>l,,n, = ... ,,- j = i1, yo > 0, VO > 0j=! "

W > 3.

23. For every tactic j and eact, element X of Xj:
jk j

- Vjj i < 0 and

1ýH

w! Ir. n a `ceo-es the krh row of A..

21



2b. For every tactic j:

n 0 0 0
2c .[H.(X.Yp) - VcA#XO'] H V [ . Y) - c]AAfor and ,

j=l J J J-

Op 0uor:H.CXc,YO) - VOA'XcP] H .(X9,#o) - VoA"X? if V. > 0.

3a. For each element Yk of Y:

AIn 0bH i(Xo'yO) W0 4nB yO

0 0

j=l yk
on 0 + follow iYif 0 >0.

3b. W [E(Y ) b]' W[B(Y0 ) - b]' for all I. > 0.

n
. 04. Z u .H*(V,Y) + Vc' is quasi-convex in V > 0 and Y 0 and

j=l 3 3one of the following:

n 00 -H(:'°

j=l3 •Yk

n o H.(x°'Y )b. X u~� Uj k 0 for at least one element 0of Y
4=1l

n 0
c. T u3 0 y 33 > 0 for at least one element of Y

j=l

and there exists a Y :? C, B(Y) 5 b such that Y> 0.

n bH.y&.,yo)
0d. 37- pj J---y -- 0 for at least one element Yk Of Y

and the functions H3(V,Y) j=l,...,n are twice differentiable

in the neighborhood of •,Y.

22



If the functions H*P(V,Y) j=l,...,n are all convcex in V 0 and Y> 0,

Condition 4 may be omitted.
In Condition 1, Y ' ET has been replaced by YO >__ 0 and the non-

negativity condition W > 0 has been added. Conditions 2b and 2c
are unchanged. The new Condition 2a may be readily derived by
applying a familiar lemma. Let F(X) be a differentiable concave
function of a vector X in the region X > 0. Let X° > 0 be chosen such

that for each element Xk of X:

bXk <= 0 and Xif Xk > 0.

k k

Then X0 maximizes F(X) in X > 0. To obtain our new Condition 2a, let:

F(X) = H.(X.,Y") - V°A;X'.j~ ~ 3

According to the lemma Xc' maximizes H.(Xj,Y°) - VoA;'X3 > 0, i.e.,

H.(X3',?) - V°A'.X°' >= H.(Xj.Y°) - V°A'X3 for all X. > 0.

Since this must hold for all tactics j=l,...,n, the new Condition 2a

implies the old one.
To derive the remaining conditions (and the inequality W_0 > 0)

we must first evaluate the derivatives of the functions Hi.(VqY)J
j=l,...,n in the region of (V°0 ,Yo). This is done by making use of
an inference from Condition 2a. Por every tactic j and each element

Xjk of Xj:

H'(y X0, ) P3Xj "Voa'k X° = 0
ak j k 0.

Take the total derivative of H4(V,Y) at (v

..... . +- . dY X0 XA dV2

23



bH.(Xi~Y0 )
w'here y denotes a vector of partial derivatives with

respect to the elements of Y. It is clear that the maximum is

isi 1 if ý -O 41=0.preserved when dXjk is nonzero only if 3jk 3 .. .

bH.(X°,-?)
Therefore, dH" = * dY'- A'X°'dV,

= 3 j=12,...,n.

ana
bH-.(Vo, o)

YH( 0Y A- .0A. j=l,...,n.

The nonnegativity condition W0 > o added to Condition 1l and our

new Conditions 3 and 4 all proceed from. a lheorem by Arrow and

Enthoven [1]. The Theorem is stated here in -1 form appropriate for

constrained minima and quasi-convex functions. Let F(X) be a

differentiable quasi-convex function of the vector X, and let G(X)

be a difrerentiable quasi-convex vector functiont both defined for

X > 0. Let X° and X0 (a vector) satisfy the Kuhn-Tucker Conditions,

specifically:
_ X0

Xý :? 0, No > 0x°>____>>0

bF oo)0 + L.o[G(X)] >-OL 'Ox I=

Xo [ + X [ c(x)] =0

10 [G(X°)J' = 0,

where 0 denotes a vector and 6G(X a matrix of derivatives with

respect to the elements of X, and let one of the following conditions

be satisfied:
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"A 0 > 0 for at least one element Xk of X;
ýXkk

b. 6X0 < 0 ror at least one element X of X Where there
?Xk k

exists an X > 0 with X > 0 such th.it G(X) < 0;

. ) 0 and F(X) is twice differentiable in the neighbor-

hooa of X°;

J. F(X) is convex.

Then XO minimizes F(X) subject to X > 0 ana G(X) < 0. To apply

Arrow and Enthoven's Theorem let:

n
F(X) = Li uH:(V,Y) + Vc"

j=l J

an.-- G(X) = 3(Y) - b. Both F(X) and G(X) are assumed to be quasi-convex

ini V > 0 a:nd Y> 0. The Kuhn-Tucker Conditions for a constrained

minimnum are:

V, >C, Y, > 0, W0 > 0

E- 3. + c> , 2u. U Y +wV° ? >__0

j=l 3 V = 1 j I

00 3 ~j1 "~
L V 0, Fv . i• by

.0 
0

E _11] 0

,. - (I ) - b]" = 0.

S.bscituting for the derivatives of H*(V,Y) j=l,...,n the Kuhn-Tucker

ConcUiions may be rewritten as:
o Wo

V° > 0, Y0 > (, W ? 0
- 1'

0 0 
IO[ý 0 l

Su.X.A. -:< 0 and 7,cjXA =0
j=1 = 1 = J

25



j =1
0i

W°EB(Y 0 ) - "= 0.

Conditions 1 through 3 of our new set imply that the Kuhn-Tucker

Conditions for a constrained minimum are satisfied. Condition 1

includes the nonnegativity conditions • > 0, yo > O. Condition 2c

is equivalent to:

n n <0
F, ")(9 c 0 nd O[ LI(9A; c]' =0.

j-1. j=l

Condition 3a may be used to derive:

n . + 0

a., Ld

a=n,

and W0 [E(Y°) - b]' = 0 follows from Condition' 3b.

The remaining stipulations of Arrow and Enthoven's Theorem apply

Lo the constrained minimization problem as follows:

n n bHI.(X°i, y)a. 7: u°ea;. - ch < 0 or !: _' >y 0
j;1 jhj h j=l ýk

for at least one element Vh of V or Yk of Y [ahj denotes

the hth row of AJ;
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eleentS/ ofV r o Y hee ter

n n •H.(X•.,Y 0 )
0~ 11 ?H(0"P

-Ch > 0 or 7 o < 0jjl=I hj Oyk

for at least one element Vh of V or Yk of Y where there
exists a T > 0 with '? > 0 such that B(ý) <= b;

n o.o n 6H (•Y°)

.J-=l Uj~j'ýjh " k ý 0 o =r t 3 yk 0

for at least one element V h of V Or Yk of Y and the

functions Hi"(V,Y) j=l,...,n are twice differentiable in the
neighborhood of (V°,YO);

n
d. The expression 7' u.H*(VY) + Vc is convex in V:>: 0 and

j=l

Y> 0.

Condizion 4 is easily shown to be equivalent to a, b, and c providing
n:he expression Y~ p3H(V,Y) + Vc" is quasi-convex. The fact that

j=l

Condition 4 is expendable if the functions H*(V,Y) j=l,...,n are

convex is implied by d.

Therefore, our new set of conditions imply that (V°,VO) minimizes

Su'_h-.(V,Y) + Vc' subject to B(Y) ._ b, VS> 0 and Y>__ 0, i.e.,".; l J J-=

n n
LI.(V°,'t) + Voc" < -' 4 H (V,Y) + Vc0.

j=l J J 3=i

for all V >_ 0, Y > 0 and B(Y) <_ b

B(Y°) < b

which is Condition 3 of the previous Section.

Before concluding this Section some observations should be made

n 0.:bout zhe properties of the expression , u WHI(V,Y) + Vc' in the

j=1 j J
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region V > 0, Y > 0. Condition 4 requires that this expression be

quasi-convex, i.e., every set R- defined as

,n 0 1
= EV, p2H*(VY) + Vc" z z

j=l 1

must be convex. If the functions H,(V,Y) j=i,...,n are all convex,

then by virtue of the fact that u1. > 0 j=l,...,n, the expression

0

Z u.HH•(VY) + Vc' must also be convex. However, the expression
j= J

is not necessarily quasi-convex if the functions H*(V,Y) §=l,...,n

are each quasi-convex. To establish quasi-convexity of
n

Z ýt9H'(VY) + Vc" the following result fr - Arrow and Enthoven [1]

may be used. A function F(X) of an n-dimensional vector X is quasi-

convex if Dr < 0 for all r=l,...,n and for all X where Dr is the

bordered determinant:

0 bF(X)/bX .... bF(X)/bXr

Dr =rF(X)/bX1 b2F(X)/bXlbX 2 F(X)/ Xlr

*F(il/b)r b2 F(2)ýnrbX b 2F(Xý/tXrb.

If it is possible to show that the bordered detorminants for the

n
function F(X) = Y t uH-(V,Y) + Vc' have the desired sign every-

j=l 3 3

where in the region V > 0, Y> 0 then our Conditions 1 through 4 are

sufficient for a global solution to the constrained min-max problem.

If quasi-convexity can only be demonstrated in the vicinity of

(V°,°), then a local solution has been found that may or may not

also be a global solution.
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V
A MODIFIED DOUBLE LAGkANGE MULTIPLIER METHOD

In general, Lagrange multiplier methods replace constrained problems
with unconstrained problems by reversing the computational roles of

resource levels and imputed resource prices. Such methods are
"fail-safe" if it is possible to show that a solution to the uncon-

strained problem always solves a constrained problem for an as-
certainable pair of resource vectors. The value of the method as a
procedure for arranging computations is entirely attributable to the
fact that explicit constraints can frequently be an expensive compu-

tational nuisance.

A "fail-safe" double Lagrange multiplier method for constrained
min-max problems with mixed strategies that conform to assumptions

1 through 10 begins with an arbitrary choice of the multiplier
vectors V > 0 and W > 0. Next, strategies X°0 j=l,...,n for the

0maximizing player's tactics, probabilities p j=l,...,n and a
strategy Yo for the minimizing player are found such that:

nx°>0jl•>0 0~.••: , 0
1. X3 0 0 jl,...,n, I0 > 0 j=l,...,n, = = 1, y 0

j=l

2a. For every tactic j and each element X of X.:

V a~< 0 and

*H.(X ,'Y )
bX - V a if X 0k>

jk if

where a jk denotes the kth row of A•.
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2b. For every tactic j:

n o 0 Ao0.Z k. [H'.(X° Y) - V AX°] > H (Xy°) - V A'X° andj=l 3 J J J J JJ

n
E ýJ. [H.(x0,Yo) - V AOX. H.(XcyO) -V A'X. i u > 0.

j=l J 3 j JJ J J JJi J

3&. For each element of ":

n bH (X°'Y°) AB(Y)0.

z 0 i + W I k.BYZ 4° , • + W=>0 n

j=1 byk L byk Ji
-1 =J tY k yk -J

The resource vectors c and b are determined after the fact according

to the formulae:

n
o Xo0XA. and b = B(Y)

j=l

and the solution is examined to verify that the problem is not de-

generate in the sense that Condition 4 is not satisfied. It should

be perfectly apparent that the strategies X° i=l,...,n, probabilities
0 3

j=l,...,n, the strategy YO, and the vectors V and W jointly satisfy

the strong set of sufficient conditions of the previous Section.

The procedure is an extrapolation to constrained min-max problems

of Everett's generalized Lagrange multiplier method. In the special

case of a single tactic the procedure reduces to the, double Lagrange

multiplier method proposed by Pugh. The probabilities then drop

from view and Condition 2b may be omitted.

At this point a rough intuitive description of the method may

be helpful. The Lagrange multiplier vectors V and W bear interpre-

tation as prices to the maximizing and minimizing players on their

resources. These vectors provide a priori rates at which the players

may convert additional units of resources to changes in the expected

value of the payoff function. The solution value of the Lagrange

function: 30



n n
S£ -H (X,Yo) - Vo 7 o o + Wo [B(Y)

j=l 3 3J , j=l + [()
n

also has an economic interpretation. The quantities V° Z ° A'X°
j=l U j i

and W°[B(Y°)]' are the opportunity costs in payoff units of the

resources used by the maximizing and minimizing players, respectively.

The value of the Lagrange function is the expected payoff to the

maximizing player modified by subtracting the opportunity cost of

the resources he must expend to gain this payoff and by adding the

value of the defense resources used to limit the payoff.

The strategies X° j=-,...,n, the probabilities I? j=l,...,n,
J J

and the strategy Ymay be viewed as an equilibrium pair in a

restricted sense. The maximizing player's mixed strategy is optimal

against the minimizing player's strategy but the reverse relationship

holds in only a partial fashion. The strategy YO is not necessarily

strictly optimal against the specific strategies X9 mixed with probab-0 3
ilities 4 j?. Pather, YO is opdimal against a specific probabilistic

mix of efficient tactical responses. That is, the fixed probabilities
0pj 3=l,...,n apply to strategies X. j=l,...,n that are continuously

altered in response to changes in the strategy choice Y and the imputed

prices of the minimizing player's resources V. These alterations

have the effect of mLaintaining the strategies X. ij=l,...,n as

economically efficient uses of resources against the minimizing

player's strategies. The specific strategies X°0 j=l,...,n are

efficient given the vector Vand the solution strategy Y.
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VI

ON SUITABLE PROBLEMS

The modified double Lagrange multiplier method does not constitute

a uniformly powerful approach to all constrained min-max problems

with the requisite characteristics. Since resource levels are

treated in computations as an output rather than as an input, the

method is best suited to problems with only small numbers of con-
straints and to investigations of solutions over a range of resource

levels. Generally, the computations required to yield an acceptable

body of results for a problem will tend to increase geometrically with

the number of constraints.

The method is principally useful as a means for addressing

problems that may be partitioned by "cells". Let h = 1,...,m be
an index of cells. Each cell is assumed to possess, individually,

all of the components of a constrained min-max problem with mixed

strategies. For the hth cell, then, we denote these components

with superscripts as follows:

j=l,...,nh - an index of tactics for the maximizing player.

Xh - a strategy for the maximizing player's tactic j.
J

P h - a probability of use of Xh.
3 3*
y - a strategy for the minimizing player.

H a (hh) - a payoff function for the tactic j.
J J
hh
XhAh - resource use by the maximizing player for tactic j.

Bh(Yh) - resource use by the minimizing player.

A tactic for the maximizing player over all cells is a specific

combination of tactics for each cell. A complete list of such

overall tactics would consist of every possible combination of cell
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tactics and can be quite long even for very simple problems. Probabil-
ities for these overall tactics may be retrieved from the probabilities

hassigned to the cell tactics in any way that preserves the weights n
as conditional probabilities. For example,

k= m for X. M1

h=l

corresponds to an independent random drawing of the cell strategies

P according to the probabilities Ln An overall strategy for the
JJ

minimizing player is the composite strategy Y = { . The
expected payoff over all cells is the sum of the expected payoff in

each cell:

h
n m n
E P..H.i(X.,Y) = E P2?Hk(X .,y')

j=l h=l j=lJ J

and the resource constraints of the overall problem are:

hn m n h cj=l 3 h=l j=l3

and

B(Y) = Z Bh(Y) <_ b.
h=l

The modified double Lagrange multiplier method makes it possible
to solve partitionable problems cell by cell. That is, the derivation

h hoof the strategies X. j=l,...,n ) the probabilities p. j=l,...,nh

and the strategy YhO for any one cell is completely separated from
the derivation for any other cell. This fact often makes it possible
to solve even very large constrained min-max problems by partitioning
them into cells such that the application of the method in any single

cell is straightforward.

Equally important, an expectational interpretation of the payoff
function and the maximizing player's resource constraints is least
likely to be objectionable with problems that may be partitioned.
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Suppose that the maximizing player's solution implies an independent

random drawing of strategies in each cell. This random process

establishes probability distributions for the actual payoff and re-

source use by the maximizing player that would result from a play of

the game with the solution strategies. In general the standard

deviations of these probability distributions will tend to diminish

relative to their means as the number of cells is increased. This

consideration militates strongly in favor of highly separable problems

in which the probable variations in payoff and resource use become

insignificant in relation to the expected values.

The modified double Lagrange multiplier method is a general

approach to formulating and solving constrained min-max problems.

It is not a computational algorithm in the same sense as the simplex

algorithm or Newton t s method. In deriving solutions that satisfy the

(o•i-itions of the previous section, the analyst is left to his

own devices. The method applies equally well with clever mathe-

matical derivations and unsubtle searches on a digital computer.

The choice of a computational route for any particular problem

must be made on the basis of the specific characteristics of the

problem. Moreover, we have provided no grounds to warrant the

belief that solutions to all suitable constrained min-max problems

can be found by applying the method. The conditions we have derived

are sufficient but they may not all be necessary.
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VII

AN ABM/SHELTER DEPLOYMENT PROBLEM

A simple ABM/shelter deployment problem can be solved as an illustra-

tion of the essential features of the modified double Lagrange multi-

plier method. The game pits warheads against terminal interccptors

and blast shelters allocated to cities. The maximizing player's

strategies are targeting plans in which each of the cities is assigned

a specific number of warheads. Strategies for the minimizing player
consist of assignments of interceptors and shelters to cities. The
interceptors are taken to be perfect in the sense that any warhead

engaged by the defense is certain to be destroyed. We shall also
assume that each shelter provides one resident of the city with com-

plete protection from all weapons effects.

The payoff of the game is the total number of fatalities anti-
cipated from an attack. In any single city fatalities occur among

the unsheltered population and are computed as an exponential

function of the number of detonating warheads. Both players are

constrained by a single scarce resource. In the case of the maximizing
player, his arsenal is presumed to consist solely of ballistic

missiles capable of delivering only a limited number of warheads.

The defense is restricted to deployments that do not require expendi-

tures in excess of a given budget. His cost function is linear.

Since the maximizing player observes the defense before choosing a
targeting plan we have a constrained min-max problem. (This formu-

lation of the ABM/shelter deployment problem is not intended to be
more than illustrative. An application of the method to a more

sophisticated and realistic version of the problem has been made

elsewhere by the author.)

The problem may be partitionel by cities. Let h=l,...,m be an
index of cities. For the hth c-ty the maximizing player exercises
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one of two tactical options. He may choose not to attack the city

at all. This we shall call the null attack. The second tactic may

be labeled an exhaustion attack. In an efficient use of this tactic

the defense's interceptors are exhausted and the maximizing player

continues to target warheads until the last warhead is just worth the

damage it will cause. Mathematically, the components of the game for

the hth city are:

Xh - number of warheads for the exhaustion attack,

h - probability of using the exhaustion attack,

Yh - a two-element vector as follows:

S- the number of terminal interceptors1

Yh - the number of blast shelters,

ph _ the population of the city,

sh - a damage function parameter,

S- cost per interceptor, and

0 - cost per shelter.

The payoff function for the null attack is:

H h(OYh) = 0

and for the exhaustion attack:

h hf 2h~ <
1(ph . 1 - exp shxh ( if ph _ Y2 > r
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These twc functions are graphed in the figure below for ph . > 0
and > 0:

Mh

P y2-- -- -- -- -- -- -- ----

H• h- (O2

O-ZIo.7

We have no vector Xh for the null attack, so:

H*(Vyh) = o.

For the exhaustion attack we have:

0= if P h. • < 0
H*(V jy)=2

ISuph { _(P - .(l exp .h• .- . •h o

if ph _ yh > 0

-2

If V = 0, the supreimm takes the value (ph .- ); if V > O, the

supreaunm is a maximum. Differentiating with respect to X yie,:';C

Sb~h Xhyh h

At a maximum:

h h hihh
s(P . 2 ) exp S.(Xh- Yr1 )l-v , and

h(ph _yh)exp JSh(e hi~o f Xh >o0
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Therefore.-

0i fph _ yh
0 < p

ti*(V ~ ~ ~ j yh p h,[i-epthh if <. Ve p .hyh ),'5hh

The expected payoff inthe nation as a whole is the expression :
(p [ h - yý)[l - exp{ shpxh - )Vý]/ - 0h _ yh > I•h

The maximizing playerts expected use of warheads is :

i ndThe expete paoffi the na/setion asep woylen is the lna expression:M~ h 2

h=l

h=l

It may be readily verified that the problem has all of the character-
istics (Assumptions 1 through 10) that are necessary for an appropriate
application of the modified double Lagrange multiplier method.

To apply the modified double Lagrange multiplier method we select
multipliers 9 > 0 and Q > 0 and then choose stratecies and probabili-
ties that constitute an equilibrium pair in the restricted sense of
the previous sections. Omitting the superscript h, Co.-i'•,,s 1, 2a,
2bj and 3a reduce to the following system of conditioral equations and
inequalities for each city:
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x° - 0 if (P=.Y')-V/s < 0

X0 = log{s(P0Yb /s + sP- if (P-)-/s > 0

0 = 0 if (P- YP - -[l + log s(P--b)/V})/s - V,?, 0

0 < L10 < 1 if (P -/ 0

LL0 =1 if (P 0) 7 1 1 g s P Y2 / ) / - V > 0

1l= 0 if P [-V] + 0 a > 0

YO- 0 if "o E-Vj + W . = 0

Y02 =0 if "0[V/s(P-Y'2) -1] + Q8 > 0

Y2> 0 if 4 [V/s(P-Y ) - 1] + W0 = 0.

There are five distinct types of solutions to this system dis-

cussed below as cases 1 through 5.

Case I: sP < V
O=0

X =0

,o = 0

Qj =0Y = 01

Yo0

0~~ 0

M + = 0.

The undefended city is not an attractive target to the maximizing

player. Therefore, there is no reason to install interceptors or

build shelters. In all of the remaining cases, the undefended city

presents a worthwhile target to the maximizing player.
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Case 2: sP >_ V WO > V, W0 > 1 - V/sP

0

Yo 0

2

i°H2 (X,'Y°) = P -/s

0 0
° X = log{sPf}j/s

•Y•. + $ = 0.

Although the city is subject to attack, the minimizing player finds

that it is best to leave the city undefended. The reasons for this
are, first, that the opportunity cost in lives of an interceptor,

Ocip exceeds the value in lives of the single warhead it destroys, V.

Second, the opportunity cost in lives of a shelter, CS, exceeds the
expected saving in lives of installing the shelter, 1 - V/sP.

Case 3: sP > V, % > 9, 0$ <_ 1 - V/sp

= log ýl/(l -

40
'o=

Y?=i

2 P - V/s(l - 00)

P 0°H2(X°,Y°= 9 08/s(l - 08)

0X 0 = log{l/(1 -0 •4
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In this case the blast shelters, but not the interceptors, are worth
the cost. The optimum number of shelters minimizes the Lagrangian:

0 •°H*(9,Y) + WBY2 .

Differentiating at Y = we find that:

- 1 + Q/s(P - YO)] + Q6 = 0.

At the margin no increase or decrease in the number of-shelters leads
ultimately to a decrease in the overall payoff. Since the offense may
move warheads among cities to maintain a marginal return of 9 per war-
head, the net number of lives saved by an additional shelter in the

city is [i - 9/s(P - Y2). This just balances the opportunity cost in

lives of the shelter, Q0.

Case 4: sP > , Q a ) 9, Os > (%/V)(1- /sP)

x0 = P - i/s

0Y = P/V - [1 + log lsP/vi '],s

2 0

ý1° 0H2 (X°,Y°) = (Wa/V)[P - V/s]

P, X = (Wa/l)[P/9 - l/s]

a.yi + $2=ctP/V - al[l + 1ogsP9}]s

The city is allocated interceptors but not shelters since the
opportunity cost of a shelter, W$, exceeds the anticipated saving

in lives from an attack, 1 - 9/sP, multiplied by the probability
of an attack, Qa/ 9 . The optimum number of interceptors, YO., is
determined not by a margin calculation as in case 3, but is set
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instead at a level that makes attacking the city at all an indif-
ferent proposition to the maximizing player. That is:

H*(V,Y) - H*(V,Y) = 0.12

The null attack and the exhaustion attack tactics are probabilistically

mixed with probabilities (1 - Vct/f) and Qdt/9 such that neither an

increase nor a decrease in the number of interceptors will reduce

the value of the Lagrangian:

(1 -°).(¢) + La0 H(Q,Y0) + Oa .21

Differentiating with respect to Y and evaluating the derivative at

Swe have:

0 2 )l = - ]+ 0~ .

A rough intuitive explanation for the choice of ° = Wa/V may be

provided by considering the role of the probability po in ascertaining

the resource level c. If we choose p < W/ai, then the resulting

arsenal is nor sufficiently large to discourage a defender from

decreasing the number of interceptors in every defended city. On

the other hand 4 > W•/9 yields a total number of warheads so large

that an increase in the number of interceptors at every defended city

must produce a return in the imputed value of intercepted warheads

that on the average exceeds Wa per additional interceptor.

Case 5: sP 9 V, WQa 9 V, W0 0 (Wa/V)(l - V/sP)

X = a/s(a - V8) - 1/s

P0 = -0 f
o. = Wc/V

y = ./s(- 9)- 1/s - log - /s
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2= P - VOL -/sB)

p° 0(X°Y) = (Qa/Q)[1/s(a - 08) - Q/si

P°x° = (c/V9)1a/sC/( - ) - 1/s]

cLY 0 + o?= 8P- C log a/(CL - 904is.

This last and most interesting type of solution is a mixture of active
and passive defense systems. An heuristic explanation of the

solution is a straightforward composite of the descriptions provided

for cases 3 and 4.

The various values of the multipliers and their association with

the five types of solutions are depicted in the figure below.

V
Cote I

V -sP

Case 4

=( W1 /V )(1 -V/sP Case 2

Case 5 / '-

Case 3

w-

xhO ho

Once a number of warheads, X , probability) Li , number of

interceptors, Y1 h and number of shelters, yl01 have been determined

for every city, the last step of the modified double Lagrange multi-

plier method is a simple summation of expected payoffs, expected use

of warheads, and defense expenditures. In the normal course of an

operations research exercise this would be repeated for many combina-

tions of values for the multipliers V and W.
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Unfortunately, it is only possible to show that the strategies

derived using the modified double Lagrange multiplier method are local

solutions to the ABM/shelter problem. An examination of the bordered

n
determinants for the expression F(X) = T p3H-!(VY) + Vc' indicates

j=1

they will all be negative wherever:

F F_ Pho loglsh(Ph _h +XhO -.
r-•' lo- -( Y)/V}/sh - 1+ •~

h

This derivative is equal to zero at the solution point V = V, Y =Yo

but is not generally nonpositive over the entire region V > 0, Y > 0.

It can be easily shown that part c of Condition 4 is met if at least

one city is both targeted and defended.
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Viii

CONCLUDING REMARKS

There are three major criticisms that can be made of the approach

to constrained min-max problems offered in this paper:

1. The wrong problem has been solved. A solution to a con-

strained min-max problem that implies a mixed strategy for the

maximizing player can have no direct application.

2. Ten strong assumptions are needed to obtain tne set of

sufficient conditions that finally provide the basis for the modified

double Lagrange multiplier method. Also, quasi-convexity of the

n
expression E •°H*(VY) + Vc" (Condition 4) is not usually easyj=l J

to establish,especially over the entire region V > 0, Y > 0.

3. As a practical matter, the use of the method is limited to

partitionable problems with few constraints and to crude explorations

of solutions over a range of resource levels.

My response to these criticisms is:
1. The right problem has proved to be quite difficult to

address on a practical level with existing computational algorithms.

The introduction of mixed strategies and the redefinition of an

equilibrium pair appears to me to be the least damaging alteration

that leaves a readily solveable version of the constrained min-max

problem. Solutions to this wrong problem will often provide close

approximations or at least bounds for solutions to the right problem.

2. The ten assumptions we have used are probably not the only

assumptions on which a Lagrange multiplier method for constrained

min-max problems can be based. For example, a fail-safe version of

the method could proceed directly from the first set of sufficient

conditions providing Condition 3a of Section III can be weakene,& to:
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n
E °H"*(V°,Y°) + W°[B(Y°)]°

j=l

n0
< E H.(V ,Y) + W°[B(Y)]' for all YET.

=j=1 i

I doubt that there are many problems for which this cannot be done.

Also, it may be possible in many circumstances to define the

functions H"! j=l,...,n more generally as:

Hý(VY)= SuP)( {H(XjY) - V[Cj(Xj)].I XjESj

Further research may also reveal that Condition 4 of Section IV may

be weakened particularly with respect to the quasi-convexity of

n
Z " .H*(V,Y) + Vc" over the entire region V > 0, Y > 0.j=l - =

3. The practical limits on the usefulness of our mezhod are
about the same as those that apply to Everett's original generalized

Lagrange multiplier method. Many problems of interest are not
well-suited for applications of Lagrange multiplier methods. How-

ever, some of the problems that are well-suited are just about

impossible to address in any other way. For example, the author

has been engaged in a study of mixes of area ABI, terninal ABM,
and blast shelters to defend the nation's urban population from

strategic missile attacks. The admissible offense strategies involve

a variety of weapons and decoys deployed to leak through, suppress,

exhaust, and detonate above the terminal defenses. Despite its

apparent complexity the problem car, Le formulated as a min-max

problem with constraints on the offense use of throw weight and the

defense use of budget funds. The problem can be partitioned by

cities and rapidly and repeatedly solved f'r different offense and

defense resource levels simply by varying two multipliers. For

entirely practical reasons no other approach to This constrai.edc

min-max problem is currently feasible.
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